
Developing Autonomous Robot Controllers using

Genetic Algorithms

Robert Rose

October 2, 2004

Abstract

This paper presents a summary of experiments conducted to evolve
autonomous robot controllers that can balance a physically simulated
articulated character.

1 Introduction

Motion capture offers a quick solution to provide realistic human motion for
animation applications. Human body motion can be recorded and “played
back” by a computer to mimic the body that was recorded. Working with
motion capture data however is cumbersome: transitioning between se-
quences, modifying the motion, and scaling the motion to a different-sized
character are all difficult tasks.

A new area in computer animation that is growing in popularity is in-
tegrating motion capture movement with physically simulated movement.
“Rag-doll physics” used in many video games (Unreal Tournment, Half-Life,
etc.) involve using motion capture for the “living” character animation and
then transitioning to a physically simulated character when the character
“dies,” to give a more life-like feel to the character’s suffering when their
health meter goes below zero. Real-time back-and-forth transitioning be-
tween physically simulated movement and motion capture movement is an
area the author has yet to see in computer animation, for example, tran-
sitioning to physically simulated movement every time the character takes
damage, rather than only when they die.

A far more realistic approach to generating human character motion for
computer animation could be to completely physically simulate all of the
motion. Physical simulation of all character movement requires development
of bones, joints, skin, muscles, and a “virtual brain” to accurately control

1



the character. This approach has been tried with varying degrees of success
by several groups over the last few years [1] [2]. Previous attempts have used
genetic algorithms to evolve a neural network to control muscle movement.
Other work has evolved even the creature itself [3].

This paper presents a summary of experiments conducted to evolve au-
tonomous robot controllers that can balance a physically simulated articu-
lated character. The controllers are based on a neural network who’s weights
and structure is evolved through genetic programming. In all experiments
the size and structure of the character was fixed. The character will live if
a physically simulated environment using the Open Dynamics Engine1.

2 Experimental Setup

2.1 Character Model

The character was modeled using three limbs connected by two hinge joints,
the bottom limb being oriented horizontally with the “floor” and the two
other limbs oriented vertically, mimicking the structure of a human leg.
Limbs were modeled in 3-dimensions as rectangular blocks and given weights
proportional to those of a human (approximated). A 2-dimensional side-view
of the character model is given in Figure 1.

knee

ankle

Figure 1: Character Model (2D side-view)

The character model was given the following inputs:
1http://opende.sourceforge.net/

2



• The height of the character as determined by observing the position
of the top limb segment (the “thigh”).

• The angles of the “knee” and “ankle” joints.

• Whether or not the character is touching the ground.

The character model was allowed two outputs: torques to be applied at
the “knee” and “ankle” joints.

2.2 Physical Simulation

The simulation was written in C++ with the physical environment simu-
lated using the Open Dynamics Engine (ODE), an open source library for
simulating rigid body dynamics.

The character when placed in the environment is simulated by ODE.
Several shortcuts were taken to speed the simulation and to make imple-
mentation easier:

• Few external forces. The character is only effected upon by gravity,
(−9.8m/s2).

• Few external collisions. The character may only collide with the
“floor” which is located at y = 0.

• No internal collisions. Inter-penetration within the character is not
considered. Instead, joint limits are placed on the character’s joints to
prevent limbs from excessively intersecting.

• Simplified contact joints. When any part of the character comes in
contact with the floor ODE contact joints are used to “bounce” the
character away from the floor. ODE has many contact joint parame-
ters available to model contacts between two bodies, however for the
purposes of simplifying the simulation and to improve stability the
only contact joint parameter used was dContactBounce.

• “Large” objects. Floating-point errors occur with ODE if “small”
objects are used, so the characters were made larger than necessary
to help prevent jitter. Originally, characters of height 1.0f were used,
but it was discovered that collision detection was unstable at this scale.
Increasing the size of the character to 10.0f resolved the collision jitter
issues.

3



• Larger CFM, smaller ERP. ODE uses two constants to control joints
and collisions, the Constraint Force Mixing (CFM) parameter and
Error Reduction Parameter (ERP). These values are used to scale
corrective forces when bodies collide and when joints begin to separate.
It was found that for the purposes of this simulation the default values
enforced too “rigid” of collisions, so the CFM was increased to 0.0001f
(default is 0.00001f), and the ERP was decreased to 0.1f (default
is 0.2f). These “softer” values allowed more natural and forgiving
behavior for the robot controllers.

2.3 Character Controller

At each time step the character was given an opportunity to inspect it’s
current inputs (see above) and generate torques to be applied at it’s joints.
This behavior was provided using a simple two-level recurrent neural net-
work, as given in Figure 2. The neural network was assigned weights for
the inputs to all nodes and the sigmoid function was used to determine the
output value for each node. It was determined through experimentation
that an appropriate range of values for the weights of the neural network
was between −5.0 and 5.0.

knee torque

ankle torque

touch

knee angle

ankle angle

height

Figure 2: Character Controller Neural Network

The process for using the neural network was the following:

1. Map the inputs (knee angle, ankle angle, height, etc.) to different

4



ranges.

2. Allow the neural network to propagate for one time step.

3. Map the outputs (knee torque, ankle torque) to different ranges.

2.4 Chromosome Representation

To perform evolution, each robot controller must be represented as a “chro-
mosome”. For these experiments the chromosome representation of the
robot controller was an array of the node weights from the controller’s neu-
ral network. Weights when represented in a chromosome are referred to as
“genes.” Each weight, while used by the neural network as a floating point
value, has an equivalent representation in the chromosome as an unsigned
integer. The mapping between these two representations is as follows:

f = (i/imax) ∗ fmax − foffset (1)

Where f is the floating point representation, fmax is the maximum de-
sired weight, foffset is an offset of the maximum desired weight, i is the
unsigned integer representation and imax is the maximum unsigned integer
representation.

It was useful for the purposes of the experiment to randomly generate
a chromosome. This was accomplished by creating an array of random un-
signed integers, then mapping them to their floating point representations,
and then assigning the results to the weights of the controller’s neural net-
work.

2.5 Fitness Evaluation

In order to determine what the best controller is for a given simulation run a
“fitness function” that rates the performance of the controller is necessary.
For the objective of the balancing controller, the fitness function should
measure how well the controller balances the character. For example a
fitness function that could be used for this objective simply measures the
height of the character at the end of the simulation.

Depending upon how the fitness function is written, strategies for meet-
ing the objective may emerge that are not what is expected. To discourage
undesirable strategies, two different approaches to the fitness function were
taken to meet the balancing objective:

1. f(t) = h(t), where h(t) is the height of the character at time t.

5



2. f(t) = f(t− 1) + b(t)− c(t), where b(t) is a “benefit” reward for how
well the controller is doing at time t, and c(t) is a “cost” penalty for
the controller behaving poorly or acting in an undesirable manner at
time t. The simulation was initialized with f(0) = 0.

The functions b(t) and c(t) were arrived upon through experimentation
and observation of the behaviors of the robot controllers:

b(t) = h(t) ∗ 0.1 + 0.01 ∗ t

c(t) = −5.0 if contacts > 0
= 0.0 otherwise

Where contacts is the number of contacts the robot is making with the
floor. The motivation for the recurrent fitness function was to encourage
controllers that might attempt to balance themselves but eventually fall
over, the belief being that they could be evolved into controllers that can
reliably balance.

2.6 Evolution

The process of evolving the robot controllers was done in a style similar
to techniques presented by Nolfi and Floreano [2]. Evolution begins with
a large population of randomly generated chromosomes which are mapped
to their corresponding robot controllers (see above). The fitness of each
controller is evaluated, and the “fittest” robots are chosen for reproduction.
A generation of offspring is then created, their fitness is evaluated, and the
process repeats until a “fit enough” robot controller is found.

split point

chromosome a

chromosome b

child chromosome

mutation

Figure 3: Chromosome Combination and Mutation with Two Parents

6



The offspring are created via combination and mutation of their par-
ent(s), as shown in Figure 3. For the purposes of this experiment, com-
bination was decided randomly to be of one or two parents, allowing for
both asexual and sexual reproduction. Combination of one parent merely
cloned the parent to make a child. Combination in sexual reproduction oc-
curs by picking a random chromosome “split point” and making the child
offspring’s chromosome the first parent’s chromosome before the split point
and the second parent’s chromosome after the split point.

After combination (or copying if reproduction is asexual) the child’s
chromosome is then randomly mutated. Mutation occurs by sampling one
or more values in the child chromosome and modifying them randomly.
Several styles of modification are possible:

• Flip one or more bits in the chromosome randomly.

• Choose random gene(s) in the chromosome and add one or more ran-
dom numbers to it.

Adding one or more random numbers to a gene in the chromosome is an
idea borrowed from Sims [3], which allows small changes in the controller’s
behavior to be more likely than dramatic changes. Mutation of this style
requires you specify a range of random numbers to add to the gene and the
number of genes to be modified at this range. It is possible to specify more
than one set of ranges and numbers of genes.

Mutation of Sims’ style was chosen for this experiment. Three different
forms were tested:

1. 10 genes with range [-100, 100], then 2 genes with range [-500, 500],
finally 1 gene with range [imin, imax].

2. 5 genes with range [-1000, 1000], then 1 gene with range [imin, imax].

3. 1 gene with range [imin, imax].

Where imin and imax are the minimum and maximum values of integers
representable by a gene in a chromosome.

2.7 Optimizations

Two optimizations were used to improve the speed of evolution:

7



1. Early pruning. If it was determined that a controller’s fitness was
too low and that there was little hope for recovery, the controller was
stopped to allow more CPU time to be given to other controllers.

2. Less rendering. Rendering the scene of characters during evolution
isn’t necessary for evolution to occur, so rendering was only omitted
during much of the evolutionary process.

3 Results

3.1 Evolved Strategies

Three common strategies were observed during evolution of the controller
that successfully met the criteria set forth by the fitness functions (Figure
4). The first strategy, labeled A in the diagram, was the “optimal” strategy
where the controller kept itself balanced by applying fine corrective forces to
the knee and ankle joints. With strategy B the controller applied maximal
forces to the knee and ankle joints, compressing the character, which hap-
pened to keep it balanced. Strategy C was a complete surprise; with this
strategy the character compressed but then “popped” itself up to balance
on the end of it’s toes.

Figure 4: Commonly Evolving Strategies (A, B and C)

Initially strategies A, B, and C were the only observed strategies, and
strategy A was believed to be the most desirable. Because of this belief,
work on evolving a controller for the character was focused on encouraging
the development of controllers that followed strategy A. Fitness Function 2

8



was actually written to encourage the development of strategy A–the belief
being that controllers that could stand for a brief moment could be mutated
into controllers that could reliably stand. Unknowingly however, writing
Fitness Function 2 created two new less-common strategies, D and E, given
in Figure 5.

Figure 5: Less Commonly Evolving Strategies (D and E)

Each strategy had an approximate height that it was capable of balancing
the character at. These approximates are given in Table 1. When viewing
the figures at the end of this paper you can use this table to correlate the
height to a strategy.

Table 1: Approximate Heights Attainable by Strategy

Strategy Height
A 15.5
B 9.4
C 12.3
D 19.5
E 21.7

3.2 Trials

Testing the evolutionary system was done in trials of 3 independent vari-
ables: number of controllers in each generation (10, 100, or 1000), mutation
technique used (1, 2, or 3), and fitness function (1 or 2). The number of

9



parents used to create offspring was fixed for all experiments at 10. Trials
of 1000 controllers over 20 generations took approximately three hours on
an Athlon XP 2600 computer.

The figures shown at the end of the paper summarize the different trial
groups. In each figure the x axis is the generation (each trial including 20
generations) and the y axis is the height attained by the controller that best
met the fitness function. The legend indicates the number of controllers
used in each generation (“1000a” or “1000 agents”), the number of parents
used to create offspring (“10p” or “10 parents”), and the mutation technique
used (“1m” or “mutation technique 1”).

Figure 6 shows 8 trials using fitness function 1 with all 3 mutation tech-
niques. Only mutation techniques 2 and 3 were able to discover strategy A
using fitness function 1.

Figure 7 shows the results of 6 trials using mutation technique 1 with
fitness function 2. The trial of generation size 10 failed to produce any
successful strategy. The other generation size trials discovered strategies A,
B, and C but were unsuccessful mutating to strategies D or E.

Figure 8 shows the results of 5 trials using mutation technique 2 with
fitness function 2. Several trials were successful at finding strategy B, but
eventually moved on to strategies A or C. One trial, displayed in yellow, was
able to discover strategy A and then attempt to move to strategies D and
E.

Figure 9 shows 4 trials using mutation technique 3 with fitness function
2. All trials optimized strategies A or B. Only one trial was able to make
the leap from strategy B to strategy A.

Complete data for each trial, including the average and standard devi-
ation of the controllers performances, is available on the website for this
paper.

3.3 Discussion

Often times the evolution of the robot controllers in this experiment ap-
peared to be doing nothing more than hill-climbing. In many of the trials it
appeared that once the controllers found a successful strategy they merely
optimized that strategy rather than attempt a dramatic change to find a
new strategy.

One of the trials however did seem to have the right mutation and fitness
function settings to attempt new strategies: Mutation technique 2 with
fitness function 2. This combination of settings appeared to have the right
balance of a) encouraging optimization of existing strategies and b) dramatic

10



mutation to attempt new strategies.
The “benefit-cost” fitness function 2 was clearly a winner as strategies

D and E would have probably never developed without it. Writing the
fitness function as a benefit-cost system allowed controllers to attempt new
strategies and fail, but get another shot at it in the next generation if the
strategy was showing promise.

It is quite possible that the difficulty each controller faced “leaping” to a
new strategy could be caused by the simplicity of the neural network used.
Further experimentation is necessary to determine if more complex (such as
two and three hidden layer) neural networks could allow more complicated
strategies and more successful mutations. Encoding the structure of the neu-
ral network in the chromosome could also prove useful, allowing mutations
of not only the weights but the neural network itself. This will definitely be
the basis of further research!

4 Conclusion

Evolutionary robotics holds much promise for developing autonomous robot
controllers, but the evolutionary utopia your author previously believed in
has been shattered by this experiment. Developing a robust simulation en-
vironment and fine-tuning the evolutionary parameters such as the amount
of mutation and the fitness function is not an easy task and requires much
human intervention to be successful. Evolutionary robotics is difficult.

References

[1] R. Smith, “Intelligent motion control with an artificial cerebellum,”
Ph.D. dissertation, University of Auckland, Auckland, New Zealand,
1998.

[2] S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology, Intelli-
gence, and Technology of Self-Organizing Machines. MIT Press, 2000.

[3] K. Sims, “Evolving virtual creatures,” in Proceedings of the 21st an-
nual conference on Computer graphics and interactive techniques. ACM
Press, 1994, pp. 15–22.

11



8

9

10

11

12

13

14

15

16

17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

100a10p1m

100a10p1m

100a10p1m

100a10p2m

100a10p2m

100a10p3m

100a10p3m

100a10p3m

Figure 6: Fitness function 1

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1000a10pAm

1000a10pAm

100a10pAm

100a10pAm

100a10pAm

10a10pAm

Figure 7: Mutation technique 1 with fitness function 2

12



0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

100a10p2m

100a10p2m

100a10p2m

100a10p2m

1000a10p2m

10a10p2m

Figure 8: Mutation technique 2 with fitness function 2

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

100a10p3m

100a10p3m

100a10p3m

1000a10p3m

Figure 9: Mutation technique 3 with fitness function 2

13


